Η τεχνητή νοημοσύνη υπόσχεται ταχύτερες και ακριβέστερες ιατρικές διαγνώσεις και βελτίωση στα θεραπευτικά αποτελέσματα των ασθενών, από την διάγνωση μέχρι την εξατομικευμένη ιατρική και την πρόβλεψη επιπλοκών.

Παρόλα αυτά όμως, ερευνητές του Πανεπιστημίου της Ουάσιγκτον, ανακάλυψαν ότι τα μοντέλα της τεχνητής νοημοσύνης, όπως και οι άνθρωποι, τείνουν να αναζητούν τη συντομότερη διαδρομή και όταν πρόκειται για τη διερεύνηση μιας ασθένειας, τότε τα πιο σύντομα μονοπάτια μπορούν να οδηγήσουν σε διαγνωστικό λάθος.

Μελέτη που δημοσιεύθηκε στο επιστημονικό περιοδικό Nature Machine Intelligence, εξέτασε πολλαπλά μοντέλα που χρησιμοποιήθηκαν τελευταία για την διερεύνηση της ακρίβειάς τους στην αναγνώριση της covid – 19 από ακτινογραφίες θώρακος.

Η επιστημονική ομάδα διαπίστωσε πως τα μοντέλα, αντί να στηρίζονται στην φυσιολογία και την παθολογία, στηρίζονται σε λανθασμένους συνδυασμούς παραγόντων που δεν σχετίζονται μεταξύ τους και με την κατάσταση από την ασθένεια. Συγκεκριμένα, τα μοντέλα αγνόησαν εντελώς βασικούς δείκτες και εστίασαν στη θέση του ασθενή προκειμένου να διαγνώσουν αν ο ασθενής είχε τη νόσο ή όχι.

«Ένας γιατρός θα περίμενε να βρει την covid – 19 από μια ακτινογραφία, στηριζόμενος σε συγκεκριμένα ευρήματα που θα απεικονίζουν την εξέλιξη της ασθένειας. Όμως ένα σύστημα τεχνητής νοημοσύνης, αντί να στηρίζεται σε αυτά τα ευρήματα,  θα μπορούσε να θεωρήσει ότι το πρόβλημα είναι η ηλικία του ασθενή και να καταλήξει ότι είναι πιθανότερο να υπάρχει η νόσος επειδή είναι πιο συχνή στους ηλικιωμένους. Μπορεί αυτή η συντόμευση να μην είναι λάθος, όμως είναι απρόβλεπτη και αδιαφανής. Και αυτό μπορεί να οδηγήσει σε λάθος διάγνωση», επισημαίνει ένας από τους συγγραφείς της μελέτης, ο Άλεξ ΝτεΓκράβ, γιατρός από το Πανεπιστήμιο της Ουάσιγκτον που κάνει το διδακτορικό του στη Σχολή Πώλ Άλεν Μηχανικών Υπολογιστών.

Πρόσθεσε δε, ότι «Ένα μοντέλο που βασίζεται σε συντομεύσεις λειτουργεί συχνά μόνο στο νοσοκομείο στο οποίο αναπτύχθηκε, οπότε όταν μεταφέρεται σε ένα νέο νοσοκομείο, αποτυγχάνει – και αυτή η αποτυχία μπορεί να οδηγήσει τους γιατρούς προς λάθος διάγνωση και ακατάλληλη θεραπεία.

Αυτή η έλλειψη ακρίβειας με την τυπική αδιαφάνεια της λήψης αποφάσεων τεχνητής νοημοσύνης, και ένα τέτοιο εργαλείο θα μπορούσε να μετατραπεί από έναν πιθανή σωτηρία σε επιβάρυνση».

Η αδιαφάνεια των αποτελεσμάτων στα συστήματα τεχνητής νοημοσύνης, οδήγησε τους επιστήμονες να καταρτίσουν επεξηγούμενα μοντέλα ώστε οι ερευνητές και οι γιατροί να μπορούν να κατανοήσουν σε λεπτομέρεια πώς τα δεδομένα αξιολογήθηκαν, ώστε να προκύψει το συμπέρασμα του μοντέλου που εφαρμόστηκε.

Οι ίδιες τεχνικές αξιολόγησης εφαρμόστηκαν και στην περίπτωσης της covid – 19.

Η ομάδα αξιολόγησε τα μοντέλα, παρατηρώντας πως θα ήταν επιρρεπή στη «χειρότερη περίπτωση σύγχυσης», λόγω έλλειψης δεδομένων για μια τόσο νέα ασθένεια. Και η χειρότερη περίπτωση είναι αυτή που επιτρέπει το σύστημα να αναγνωρίζει σύνολα δεδομένων, αντί της πραγματικής παθολογίας της νόσου», πρόσθεσε ο επίσης συγγραφέας Τζόσεφ Γιανιζεκ, επίσης διδακτορικός φοιτητής της Σχολής Άλεν με πτυχίο ιατρικής από το Πανεπιστήμιο της Ουάσιγκτον.

Οι ερευνητές εκπαίδευσαν τα μοντέλα σε ένα δεύτερο σύνολο δεδομένων, το οποίο περιείχε θετικά και αρνητικά περιστατικά COVID-19 που προέρχονταν από παρόμοιες πηγές, εξαιτίας των οποίων θεωρήθηκε ότι είναι λιγότερο επιρρεπή στη σύγχυση. Όμως όταν τα δεδομένα που δόθηκαν στα μοντέλα ήταν εξωτερικά, τότε η απόδοσή τους μειώθηκε και πάλι.

Έτσι, διαπιστώθηκε ότι η σύγχυση μειώνεται όταν τα δεδομένα προέρχονται από παρόμοιες πηγές. Αποκαλύπτουν επίσης το βαθμό στον οποίο τα ιατρικά συστήματα τεχνητής νοημοσύνης υψηλής απόδοσης ακολουθούν ανεπιθύμητες διαδρομές αντί για τα επιθυμητά δεδομένα.

«Η ομάδα μου και εγώ είμαστε ακόμα αισιόδοξοι για την κλινική βιωσιμότητα της τεχνητής νοημοσύνης στην ιατρική απεικόνιση. Πιστεύω ότι θα έχουμε τελικά αξιόπιστους τρόπους για να αποτρέψουμε τις συντομεύσεις, αλλά θα χρειαστεί περισσότερη δουλειά», δήλωσε η εποπτεύουσα καθηγήτρια Su -In Lee, σημειώνοντας πως «η επεξηγούμενη τεχνητή νοημοσύνη μπορεί να αποτελέσει ουσιαστικό εργαλείο ώστε αυτά τα μοντέλα να μπορούν να χρησιμοποιηθούν με ασφάλεια και αποτελεσματικότητα, να διευρύνουν τη λήψη ιατρικών αποφάσεων και να επιτύχουν καλύτερα αποτελέσματα για τους ασθενείς».

Μέχρι στιγμής, οι διαγνώσεις για την covid – 19 γίνονται από γιατρούς, βάσει μοριακού ελέγχου και δεν στηρίζονται σε ακτινογραφίες θώρακος. Όσο για τα συστήματα covid-net που εφαρμόστηκαν σε διάφορα νοσοκομεία στις ΗΠΑ, δεν είναι γνωστό αν χρησιμοποιήθηκαν για ιατρική διάγνωση ή η εφαρμογη αφορούσε μόνο ερευνητικούς λόγους.

Ακολουθήστε τον ot.grστο Google News και μάθετε πρώτοι όλες τις ειδήσεις
Δείτε όλες τις τελευταίες Ειδήσεις από την Ελλάδα και τον Κόσμο, στον ot.gr

Latest News

Πρόσφατα Άρθρα Tεχνητή νοημοσύνη
Τεχνητή Νοημοσύνη: Η έλλειψη ενέργειας για τα data centers αλλάζει τον τεχνολογικό χάρτη της Ευρώπης
Tεχνητή νοημοσύνη |

Η αδηφάγα Τεχνητή Νοημοσύνη αλλάζει τον τεχνολογικό χάρτη της Ευρώπης - Που πάνε τα νέα data centers

Η πεινασμένη για ενέργεια τεχνητή νοημοσύνη καταπονεί τα δίκτυα ηλεκτρικής ενέργειας της Ιρλανδίας, θέτοντας σε κίνδυνο τη θέση της χώρας ως τεχνολογικού κόμβου της Ευρώπης

Κυριάκος Μητσοτάκης για AI: Τεράστια ευκαιρία για τη χώρα η Τεχνητή Νοημοσύνη
Tεχνητή νοημοσύνη |

Κυριάκος Μητσοτάκης για AI: Τεράστια ευκαιρία για τη χώρα η Τεχνητή Νοημοσύνη

Ο πρωθυπουργός Κυριάκος Μητσοτάκης συζήτησε με το μέλος της Συμβουλευτικής Επιτροπής για την Τεχνητή Νοημοσύνη και αντιπρόεδρο του Endeavor Greece Ανδρέα Σταυρόπουλο στο πλαίσιο του GenAI Summit

IBM: Ενίσχυση των επιχειρηματικών επενδύσεων στην τεχνητή νοημοσύνη
Tεχνητή νοημοσύνη |

Ενίσχυση των επιχειρηματικών επενδύσεων στην AI - Τι δείχνει έρευνα της IBM

Έρευνα της IBM δείχνει ότι τα στελέχη των επιχειρήσεων αναγνωρίζουν τα οφέλη των επενδύσεων στην πληροφορική για την ενίσχυση της βιωσιμότητας, με το 88% να σχεδιάζει να αυξήσει τις επενδύσεις